Rube Goldberg Lab Stations

Directions: Use the supplies at each of the lab stations to create a small <u>2</u> energy transfer Rube Goldberg machine. Each station has different supplies and can complete different tasks, so use your imagination.

Station #	List of Supplies	Simple Machines Used	Explain Energy Transfer	Diagram of Machine
7				
2				
3				
4				
5				

Station #	List of Supplies	Simple Machines Used	Explain Energy Transfer	Diagram of Machine
6				
7				
8				
9				

Review Questions

Directions – Answer the following questions after completing each station.

- 1. Which station was the easiest to create a 2 energy transfer machine?
- 2. Which stations was the most challenging to create a 2 energy transfer machine?
- 3. What are some common materials you might have at home that could create a multiple energy transfer Rube Goldberg machine?
- 4. Explain in your own words how energy is conserved (not lost, created or destroyed) as it transfers from one object to another.
- 5. Explain how you can use simple machines that transfer energy many different times to complete one simple task.