

Extension: Half-Life of Candium: Radioactive Dating

Determining Absolute Age

Background Information: Testing of radioactive minerals in rocks best determines the absolute age of the rock. By comparing the percentage of an original element (parent atom) to the percentage of the decay
 element (daughter atom), the age of a rock can be calculated.

Procedure: You will be given a sample of a radioactive element known as Candium (M\&M's), 50 candies. Radioactive Candium stabilizes into a more stable element Greenium (split peas). Read the procedure before you start the lab

1. Place the 50 candies in the cup/bag. The Candium with the " M " side up are the number radioactive unstable "undecayed" Candium atoms (the parent atoms) in your igneous rock when it was formed
2. Shake the cup/bag- not too vigorously! Shake the bag for about 7.13 seconds (this represents 713 million years passing). This represents time to decay or one half-life.
3. Carefully pour the Candium atoms onto a paper towel. Remove all the stable Candium atoms-those with the " M " side down. Stable Candium atoms are really a new element: Greenium atoms. Replace in the bag these removed stable Candium atoms (parent atoms) with same number of greenium atoms (daughter atoms).

The total number of M\&M's and peas in your bag must be the same as the number of M\&M's you started with (50). Atoms are never lost they just decay from the radioactive atoms (M\&Ms) to more stable ones (flipped over M\&Ms or peas).
4. Count and record the number of radioactive "undecayed" Candium atoms (' M ' side up) remaining. Record in the data table
5. Repeat steps 2,3 and 4 until all the candies "decayed" (flipped ' M ' side down) or 10 shakes of the cup/bag-which ever happens first.

Data Table

Time \# of shakes) Half Lives	Number of "undecayed" radioactive Candium atoms remaining with the "M" side up. "Parent" atoms.	Number of Greenium atoms. The stable "daughter" atoms.
0	50	0
1		
2		
3		
4		
5		
6		
7		
9		
10		
8		

Data Analysis

Please use the graph below plot your data of parent and daughter atoms over time passed (millions of years).

Questions

1.The M\&M's represent the _.
2.The split peas represent the
3. How much of a radioactive element becomes stable in a half-life?
4. What is the half-life of Candium? (hint: The time you shook the bag is the half-life of candium.)
5.If you started with $100 \mathrm{M} \mathrm{\& M}$'s, would the half-life change? Please explain.
6. Suppose you had 20 radioactive (parent) M \& M's. Using your graph determine how many half-lives had passed.
7. After 3 half-lives had passed how many radioactive (parent) $M \& M$'s would be left? Number of decayed (daughter) M\&M's left?
8. Looking at the table of elements used in radioactive dating, identify which element the radioactive M \& M 's represent. (Hint: you shook your m\&m's for 7.13 seconds to represent 713 million years).

Elements used in radioactive dating		
Radioactive element	Half-life (years)	Dating range (years)
carbon-14	5,730	$500-50,000$
potassium-40	1.3 billion	$50,000-4.6$ billion
rubidium-87	47 billion	10 million-4.6 billion
thorium-232	14.1 billion	10 million-4.6 billion
uranium-235	713 million	10 million-4.6 billion
uranium-238	4.5 billion	10 million-4.6 billion

9. Can this radioactive element be used to determine the age of humanoid fossils? Why or why not? (Remember humanoids first appeared 5 million years ago).
10. Try multiplying $1 / 2 \times 1 / 2$ over and over to determine if you ever get to zero. $1 / 2 \times 1 / 2 \times$ etc. Will a small amount of the "parent" radioactive element always remain?

Answers

1. Parent Atoms
2. Daughter Atoms
3. 50%, Each candy piece has two sides, therefore the chances of either side landing face up is 50%
4. The half-life of candium in this activity was 10 seconds
5. The half-life will not change. One can start with "any given amount".
6.
7. $2000 / 713=2.8 \mathrm{HL}$ Look on graph.
8. U-235
9. No would need to use C-14
10. Yes, a small amount of the parent Atom will remain. This concept is successive halves. No matter how far you multiply, a fraction of the whole will remain. In the case of C-14, eventually only a single atom will remain.
