Directions - Using the data from the motion and mass crash activity, calculate the kinetic energy of the Hot Wheels car during the $\mathbf{2 0} \mathbf{~ c m}$ average measurements of the activity.

Step 1- You will first need to find the velocity of the Hot Wheels car. The following formula is used

$$
\text { Velocity }=\text { distance } \div \text { time }
$$

The ramps are $\mathbf{1}$ meter long, so use the data table below to help you find the VELOCITY of the Hot Wheels car.

Number of Washers	pistance	\divAverage Time to crash into Jenga Block (from Motion \& Mass Crash)	$=$	VELOCITY	Square the Velocity for the next step	
0	1 m	\div		$=$		
1	1 m	\div		$=$		
2	1 m	\div		$=$		
3	1 m	\div		$=$		
4	1 m	\div		$=$		
5	1 m	\div		$=$		
6	1 m	\div		$=$		
7	1 m	\div		$=$		

Step 2- You will calculate the kinetic energy of the Hot Wheels car. Use the following formula to calculate Kinetic Energy

Use the data table below to help you calculate the kinetic energy

Number of Washers	Mass (g) (from Motion \& Mass Crash)	x	*Velocity $^{2} \mathbf{x}$	$\underline{0.5}$	$=$	Kinetic Energy
0		x		0.5	$=$	
1		x		0.5	$=$	
2		x		0.5	$=$	
3		x		0.5	$=$	
4		x		0.5	$=$	
5		x		0.5	$=$	
6		x		0.5	$=$	
7		x		0.5	$=$	

*hint - make sure you use the squared velocity number from part 1

[^0]
[^0]: ** hint - When using a calculator, it is easier when you use the following pattern--
 Mass x velocity ${ }^{2}=$ then $\times 0.5=$ Kinetic Energy

