8.2.1 - INTERVENTION- KINETIC ENERGY

Directions - Complete all of the following activities to help you review information about kinetic energy.

PART 1 - KINETIC ENERGY VIDEO

Go to the following website and answer the following questions while you watch the video about kinetic energy. https://www.youtube.com/watch?v=zDcf7eEaPOM&t=184s

- 1. What is kinetic energy?
- 2. Does an object that is rotating have kinetic energy?
- 3. What are 2 things objects need to have kinetic energy?
- 4. What unit is used to measure kinetic energy?

PART 2 - FINDING KINETIC ENERGY

The formula for kinetic energy is $KE = (mass \times velocity^2) \times 0.5$. Use this equation to find kinetic energy for each of the following.

- 5. How much kinetic energy would a bowling ball have with a mass of 10 and a velocity of 2 (remember to square the velocity)? _____
- 6. How much kinetic energy would an eagle have with a mass of 5 and a velocity of 3? ______
- 7. How much kinetic energy would a truck have with a mass of 25 and a velocity of 5? ______
- 8. How much kinetic energy would a rabbit have with a mass of 3 and a velocity of 5? ______

PART 3 - EXAMPLES OF KINETIC ENERGY

Go to the following website and choose 3 examples of kinetic energy. For each example, you need to include the following: http://www.softschools.com/examples/science/kinetic_energy_examples/4/

a. A <u>neatly colored</u> picture of the example

b. A basic <u>description</u> of how it is showing kinetic energy

Kinetic Energy Example #1	Kinetic Energy Example #2	Kinetic Energy Example #3
Description	Description	Description

PART 4 - KINETIC ENERGY FACTS

Go to the following website to fill in the missing information.

http://www.softschools.com/facts/energy/kinetic_energy_facts/394/

>	An Keeps the	same amount of kinetic	unie	ess it speeds	_ or slows
>			object as long as t	he objects'	
	and	are known.			
	Theuse	ed when measuring kinetic energy is	called a		·
>	Kinetic energy can	in any direction who	ether up and		_or left to
>	When an objects' mass	, its kinetic		also doubles	
>	When an objects'	doubles, its kinetic energy _			
>	The	an object moves, the	kinetic		it
	has.				
>	When an object	with another object, it		its kine	tic energy to
	the other object.				
>	As a car on a roller coaster goes	hill, it	kinetic		
>		kinetic energy,		has to be done	to the object
	The word kinetic comes from the	word kinesis whic	ch means		
	Although the concept of kinetic energy	dates back to the days of Aristotle,	Lord	i	s given the
	credit for first using the term around the year				
>	Most kinetic energy begins as a		energy and is		
>	There are two main types of kinetic en	ergy:a	and		
>	kineti	ic energy depends on	thro	ough	and
	rotational kinetic energy depends on				